TIMARIS

PVD Production Platform for Semiconductor & Magnetic Storage
The TIMARIS cluster tool is dedicated for the deposition of ultra-thin metallic and insulating films down to a thickness of one nanometer and below and stacks of such films with very precise material thickness and high uniformity specifications. SINGULUS TECHNOLOGIES is a renowned manufacturer of advanced thin-film deposition equipment for MRAM, thin-film head, sensor and other semiconductor applications. It is the trusted partner in the respective industry and extends its leadership in the thin-film deposition technology for semiconductor applications.

SINGULUS has already established and qualified the second generation of the TIMARIS PVD Cluster Tool platform in the market and is offering a complete portfolio of process modules for different applications.

As of today, more than ten process modules are available to configure a TIMARIS system according to customer needs. These modules include the Multi-Target-Module (MTM), Oxidation-Process-Module (OPM),...

Leading Nano-Coating Technologies
for Magnetic Storage and Semiconductor Wafer Production

TIMARIS Cluster Tool

Advanced Deposition System
Pre-Clean-Module (PCM), Combi-Process-Module (CPM), Four-Target-Module (FTM) and Static-Deposition-Module (SDM) as well as the Rotating-Substrate-Module (RSM). The RSM is the core module of the ROTARIS platform, our sputtering system for special R&D applications.

The TIMARIS PVD modules (FTM, iPVD, MTM, RSM and SDM) incorporate the full scope of sputtering techniques as: DC magnetron sputtering, pulsed DC magnetron sputtering and RF magnetron sputtering as well as combinations of these modes are selectable by recipe.

Applications

→ TMR, pTMR – MRAM
→ Magnetic sensor (GMR, AMR, TMR)
→ Integrated inductors
→ Integrated voltage regulator (Buck Converter)
→ MEMS
→ High moment materials
→ TFH reader & writer
→ Semiconductors

All TIMARIS applications require the deposition of ultra-thin metallic and insulating films and film stacks down to a thickness of one nanometer and below with very precise material thickness and high uniformity specifications.

The MTM and the FTM are the key components of the TIMARIS platform; the MTM incorporates the Linear Dynamic Deposition (LDD, US patent US 7,799,179 B2) technology in combination with ten sputter targets in one vacuum chamber.
TIMARIS Platform
PVD Production Platform for Semiconductor & Magnetic Storage

1 Multi-Target-Module
 Top: Target drum with 10 rectangular cathodes; drum design ensures easy maintenance;
 Bottom: Main part of the chamber containing LDD equipment

2 Oxidation Module
 Low energy remote atomic plasma oxidation; natural oxidation; low energy surface treatment

3 Pre-Clean-Module
 (Pre-Clean, surface treatment)

4 Transport Module
 (UHV wafer handler)

5 Load Port
 (according to customer specification)
TIMARIS
Multi-Cathode Deposition Platform for Various Semiconductor and Magnetic Storage Applications

1 Multi Target Module (MTM)
 Multi-Target-Module with 10 DC/RF cathodes
2 Four-Target-Module
 Four-Target-Module with 4 DC/RF cathodes
3 Oxidation-/Combi-Process-Module (OPM/CPM)
 Oxidation of ultra-thin metallic films into insulating films/oxidation and pre-clean in one module
4 Pre-Clean-Module (PCM)
 Cleaning of wafer prior to deposition
5 Rotating-Substrate-Module (RSM)
 Modular vacuum deposition for applied research in semiconductor industry and other areas
6 Static-Deposition-Module (SDM)
 High rate sputter deposition of metallic and non-conducting materials
7 Small-Thermal-Processing-Module (sTPM)
 Module for in-situ thermal processing of single wafers
8 Rapid Cooling Module (RCM)
 Module for very fast cooling of the wafer up to -100 °C

TIMARIS
PVD Production Platform for Semiconductor & Magnetic Storage
Linear Dynamic Deposition (LDD)

Deposition Technique:
Linear PVD Magnetron and Linear Movement of Wafer

→ Short target-substrate distance:
 → Best coating efficiency
 → Low cost of ownership

→ Thickness adjusted by wafer speed:
 → Precise thickness control & repeatability
 → Ultra thin-film < 0.1 nm; smallest thickness step: < 0.01 nm

→ Special LDD capabilities:
 → Deposition of thickness wedges
 → Preparation of concentration gradients

→ Multi-directional coating:
 → Smooth films and interfaces

→ Stationary Aligning Magnetic Field (AMF):
 → Magnetic pre-alignment of easy axis direction

→ Leakage field of cathode parallel to wafer travel direction:
 → Ideal symmetry for magnetic film applications
 → Robust and reliable design

The FTM module uses Linear Dynamic Deposition in combination with up to four cathodes. The LDD technology is especially designed for deposition of ultra-thin films, magnetic films, high-quality metallic, conductive and insulating films and is the key to deliver world class material uniformity across large wafer sizes, combined with an exceptional precise control of ultra-thin layer thickness down to 1% of a nanometer.
Multiple film stack deposition, without the need to break ultra-high vacuum, is one of the key advantages of the MTM process module. Additional features such as wafer heating for hot substrate deposition (option) or a collinear Aligning Magnetic Field (AMF) are available. The AMF can be activated to align the magnetic easy axis during deposition of ferromagnetic films.

The Linear Dynamic Deposition (LDD) technology enables the capability to deposit wedge films with a different film thickness across the wafer and to deposit alloy films with adjustable concentration gradients across one wafer. Both features allow a very cost effective development of film stacks and accelerate the devices development.

The LDD technology is the key to delivering world class material uniformity across large wafers and exceptional precise control of ultra-thin layer thickness down to 1% of a nanometer.

Details:

- DC/RF magnetron
- All sputter deposition modes selectable by recipe for all 10 cathodes
- LDD technology
- RF bias option
- Ultra-high vacuum technology, base pressure < 8*10^-9 Torr
- Wafer heating and cooling (options)
The Four-Target-Module (FTM) incorporates Linear Dynamic Deposition (LDD) technology in combination with up to four sputter targets in one vacuum chamber.

The FTM incorporates the same functionalities like the Multi-Target-Module (MTM) such as the substrate heating, the Aligning Magnetic Field (AMF) and the capability to deposit wedge films with a different film thickness across the wafer and to deposit alloy films with adjustable concentration gradients across one wafer. The only difference of the FTM is the number of targets. It is particularly designed for deposition of periodic multi-layers with high wafer throughput.

Details:

- DC/RF magnetron
- All sputter deposition modes selectable by recipe for all 4 cathodes
- LDD technology
- RF bias option
- Ultra-high vacuum technology, base pressure < 8*10⁻⁹ Torr
- Wafer heating and cooling
The Pre-Clean-Module (PCM) is used to clean the wafer prior to deposition. This is a standard technique employing sputter etch technology by applying RF power to the wafer. Typically, the process removes residual water and other molecules and native oxides by adjusting the etching process parameters. Optionally, this module can also be equipped with an ECWR plasma source. This additional plasma source provides a more flexible etching process (higher etch rates, lower etching energies). The module geometry (large plasma source, rotational symmetric pump system) ensures a high uniformity of the etching.

Details:

- Wafer cleaning, removal of native oxides by sputter etch
- ECWR plasma source as option
- Variable distance between substrate and ion source
- Degas heater as option
- Ultra-high vacuum technology, base pressure < 5*10^-8 Torr
The Oxidation-Process-Module (OPM) is required to oxidize ultra-thin metallic films into insulating films of very high quality. Such films are required in tunnel magneto resistance layer stacks as tunneling barriers. The oxidation can be performed by using a remote plasma provided by an ECWR plasma source. This source generates oxygen ions and radicals of very low adjustable energy. Alternatively, the oxidation can be performed by the so-called natural oxidation by exposing the metal film to pure oxygen of low pressure (10 Torr down to 0.1 m Torr). The module geometry (large plasma source, rotational symmetric pump system) ensures a high uniformity of the oxidation.

The Combi-Process-Module (CPM) comprises both technologies of oxidation and pre-clean in one module. This is a cost-efficient option, since only one module for two process steps is required. It is mainly envisaged for R&D purposes, where a high throughput is of less importance. The process performance is identical with the Oxidation-Module and the Pre-Clean-Module.

Details:

- Low energy remote plasma oxidation
- Natural oxidation
- Surface treatment by low energetic ions
- Wafer cleaning, removal of native oxides by sputter etch
- Variable distance between substrate and ion source
- Ultra-high vacuum technology, base pressure < 5*10^-8 Torr
The name-giving characteristic feature of the RSM is the sputter deposition onto a rotating substrate. Tilting of the substrate stage as well as the rotating speed are parameters to control the properties of the deposited films. The RSM can be equipped with up to 12 PVD cathodes with a target diameter of 100 mm. Co-sputtering with up to four cathodes utilizing DC/pulsed DC and RF mode are additional important technologies for any R&D work. The ultra-high vacuum base pressure down to $< 10^{-8}$ Torr makes the RSM a perfect tool for depositing extremely thin films and stacks of such films as typical for magneto-electronic applications. The RSM is the core module of SINGULUS’ ROTARIS platform.

Applications:

- Material evaluation due to co-sputter
- Low initial costs on targets – COO
- Flexible process configuration
- Small footprint

Details:

- 300 mm and 200 mm wafer
- Up to 12 PVD cathodes, target Ø 100 mm
- Co-sputtering
- DC/RF sputtering
- Base pressure $< 10^{-8}$ Torr
- Ion beam source [option]
- In-situ aligning magnetic field [option]
- Wafer heating [option]
The Static-Deposition-Module (SDM) comprises a standard magnetron cathode with optimized target utilization for high rate sputter deposition of metallic and non-conducting materials for multiple applications. DC magnetron as well as RF magnetron sputter modes are selectable through a recipe menu. The module is envisaged to be used for deposition of films with high deposition rate that do not require the extremely high uniformity that can be achieved by the LDD technology.

Details:

→ DC and RF sputter deposition selectable by recipe
→ Variable distance between substrate and sputter target
→ Ultra-high vacuum technology, base pressure < 5*10^-8 Torr
Rapid Cooling Module (RCM) / Small-Thermal-Processing-Module (sTPM)

Module for very fast Cooling of the Wafer up to -100 °C / R&D Version for Thermal Processing of Wafers

Module for rapid wafer cooling of single wafers. This module allows to cool down the wafer after the heating process and before the deposition process without breaking the vacuum.

Details:
- Rapid wafer cooling
- Ultra High Vacuum back pressure < 1*10⁻⁸ Torr
- Temperature up to -100 °C

Module for in-situ Thermal Processing of single wafers. This module allows to bake a substrate (wafer) within the system without breaking the vacuum and subsequent further deposition.

Details:
- Thermal Processing by Annealing of wafers
- Ultra High Vacuum back pressure < 1*10⁻⁸ Torr
- Ultra High Vacuum back pressure during annealing < 5*10⁻⁸ Torr
- Temperature up to 600 °C
- High temperature uniformity
- High temperature stability
TIMARIS II – 300 mm Wafer

Footprint consists of:

→ 2 Multi-Target-Modules
→ Combi-Process-Module (CPM)
→ 1 Transport Module
 including EFEM and 2 FOUP
 Loadports
→ Multiple wafer handling
→ Throughput: up to 20 Wafer
 with standard MRAM layer stack
→ Software integration:
 GEM/SECSII Interface

TIMARIS II – 200 mm Wafer

Footprint consists of:

→ Pre-Clean-Module (PCM)
→ Thermal-Process-Module (sTPM)
→ Multi-Target-Module (MTM)
 with 10 Targets
→ Rotating-Substrate-Module (RSM)
→ Vacuum-Transport-Module
 with cassette loading
TIMARIS III – 300 mm Wafer High Volume Production

Footprint consists of:
- 2 x Multi-Target-Module (MTM) with 10 Targets each
- 2 x Four-Target-Module (FTM) with 4 Targets each
- 2 x Pre-Clean-Module (PCM)
- UHV Transport Module incl. EFEM and FOUP

TIMARIS – 200 mm Wafer

Applications & Technologies
- Preclean Etch
- Metal Deposition
- Al, Ti, Mg, Cu, Ta
- Metal-Oxides
- Ta₂O₅, HfO₂, SiO₂
- DC/RF Sputtering
SINGULUS TECHNOLOGIES – Innovations for New Technologies

SINGULUS TECHNOLOGIES develops and assembles innovative machines and systems for efficient and resource-saving production processes, which are used worldwide in the solar, semiconductor, medical technology, consumer goods and data storage.

The company's core competencies include various processes of coating technology, surface treatment and wet-chemical and thermal production processes.